The Temporal Dynamics of Scene Processing: A Multifaceted EEG Investigation
نویسندگان
چکیده
Our remarkable ability to process complex visual scenes is supported by a network of scene-selective cortical regions. Despite growing knowledge about the scene representation in these regions, much less is known about the temporal dynamics with which these representations emerge. We conducted two experiments aimed at identifying and characterizing the earliest markers of scene-specific processing. In the first experiment, human participants viewed images of scenes, faces, and everyday objects while event-related potentials (ERPs) were recorded. We found that the first ERP component to evince a significantly stronger response to scenes than the other categories was the P2, peaking ∼220 ms after stimulus onset. To establish that the P2 component reflects scene-specific processing, in the second experiment, we recorded ERPs while the participants viewed diverse real-world scenes spanning the following three global scene properties: spatial expanse (open/closed), relative distance (near/far), and naturalness (man-made/natural). We found that P2 amplitude was sensitive to these scene properties at both the categorical level, distinguishing between open and closed natural scenes, as well as at the single-image level, reflecting both computationally derived scene statistics and behavioral ratings of naturalness and spatial expanse. Together, these results establish the P2 as an ERP marker for scene processing, and demonstrate that scene-specific global information is available in the neural response as early as 220 ms.
منابع مشابه
Depth of anesthesia estimation based on EEG signal using brain effective connectivity between frontal and temporal regions
Background: Ensuring adequate depth of anesthesia during surgery is essential for anesthesiologists to prevent the occurrence of unwanted alertness during surgery or failure to return to consciousness. Since the purpose of using anesthetics is to affect the central nervous system, brain signal processing such as electroencephalography (EEG) can be used to predict different levels of anesthesia....
متن کاملTime course of visual perception: coarse-to-fine processing and beyond.
Our perception of a visual scene changes rapidly in time, even when the scene itself does not. It is increasingly clear that understanding how the visual percept changes in time is crucial to understanding how we see. We are still far from fully understanding the temporal changes in the visual percept and the neural mechanisms that underlie it. But recently, many disparate lines of evidence are...
متن کاملIctal and Interictal Electroencephalography of Mesial and Lateral Temporal Lobe Epilepsy; A Comparative Study
Background: Epilepsy is considered as one of the most important disorders in neurology. Temporal lobe epilepsy is a form of epilepsy including two main types of mesial and lateral (neocortex). Objectives: Determination and comparison of electroencephalogram (EEG) pattern in the ictal and interictal phases of mesial and lateral temporal lobe epilepsy. Materials and Methods: This cross-sectiona...
متن کاملCompressed Domain Scene Change Detection Based on Transform Units Distribution in High Efficiency Video Coding Standard
Scene change detection plays an important role in a number of video applications, including video indexing, searching, browsing, semantic features extraction, and, in general, pre-processing and post-processing operations. Several scene change detection methods have been proposed in different coding standards. Most of them use fixed thresholds for the similarity metrics to determine if there wa...
متن کاملPrediction of Epileptic Seizures in Patients with Temporal Lobe Epilepsy (TLE) based on Cepstrum analysis and AR model of EEG signal
Epilepsy is a chronic disorder of brain function caused by abnormal and excessive electrical neurons discharge in the brain. Seizures cause disturbances in consciousness that occur without prior notice, so their prediction ability, based on EEG data, can reduce stress and improve quality of life. An epileptic patient EEG data consists of five parts: Ictal, Inter-Ictal, pre-Ictal, Post-Ictal, an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2016